Learning to Program Using D

Jesse Phillips

September 21, 2012

Contents

[3__A Brief Historv

[3.1 The Dinosaurd o
B11 Assembld

4 CONTENTS

5.1.1 Selective Importl 38

Chapter 1

Getting Started

1.1 Audience

The goal of this book is to provide the knowledge needed for one to become a
good programmer and to show that D provides everything needed to go from a
first time ”Python” programmer to basic ”C” programmer, so no programming
experience is expected.

The book is intended to utilize most aspects of the D programming language
and the standard library, Phobos. Most importantly it will use these to instill
proper technique to both the reader and myself. However, this can make exam-
ples appear much longer and with greater complexity then needed to achieve
the task, especially early on when the reader is unfamiliar with all things pro-
gramming. I hope to be able to step into proper form quickly and cover the
important points.

Examples are a huge part of this book. For those with background in another
language these examples will be good to skim through as I'll be introducing
constructs as they become useful and will not be providing entire sections to
specific features, such as unit-tests and contracts. An index will of course be
useful, once I decide to figure out how to do that.

History, comparisons, features, debates, and other language topics are the
subject of this book. Teaching programming is the objective and that will re-
quire many of these, for example when discussing pointers it may be appropriate
to point out traps that C has and D prevents.

The document itself is made available under the Creative Commons license:
http://creativecommons.org/licenses/by-nd/3.0/

The source code is provided under the Boost Software License: http://www.boost.org/LICENSE_1_0.txt

1.2 Processing

A program is quite simply a list of instructions. These instructions may result
in complex operations, but is nothing more than doing what is asked.

6 CHAPTER 1. GETTING STARTED

1. Go grocery shopping

The list above is quite short, but still provides an instruction for what should
be done.

1. Enter Car

Drive to Fred Myers
Collect Milk

Collect Eggs

Collect Chicken Wings

Purchase Items

NS ok W

Drive Home

This list provides more detail on what is to be done. It names specific items
that need to be purchased and the actions for getting to and from the store.
Yet we can still go into even more detail on how to go grocery shopping.

1. Lift right leg

2. Move right leg in forward position
3. Place right leg down

4. Press off with left leg

5. Lift left leg

6. ...

This would take much longer to provide all the needed actions to make the
trip to the store. Each one of these could easily be the construction of the
previous.

1. Go grocery shopping

(a) Enter Car
i. Lift right leg
ii. Move right leg in forward position
iii. Place right leg down
iv. Press of with left leg
v. Lift left leg
vi. ...
(b) Drive to Fred Myers
(c) Collect Milk

1.3. TYPES IN PROGRAMMING 7

(d) Collect Eggs

(e) Collect Chicken Wings
(f

(g) Drive Home

Purchase Items

And these are exactly the kinds of things we want to build when making a
program. A computer requires very specific instructions for everything it does;
as we build our programs we want to make these instructions reusable.

1.3 Types in Programming

In the language of this book we have what is known as a static type system
as opposed to a dynamic type system. A type is there to be sure you don’t
misrepresent something. A common toy used as a baby is one where you must
place objects in their proper hole. Some holes are square, some rectangular,
and other triangle. The objective is to select the right type of hole for the type
of object, and you are prevented from mixing the types. The type system in a
programming language has the same purpose as those holes in the toy.

Consider the representation the computer uses for everything. All of its
information is held as an electrical current that is either there or it is not. In
English we use a combination of twenty-six letters to construct ideas, other
languages may have more or less. A computer only has the two and just like we
can take words out of context and get a different meaning the same thing can
happen to a computer.

It is generally easiest for humans to think of these patterns of ones and
zeros, known as bits, as numbers especially since mathematical operations are
primitives of the CPU. Consider a single character which is represented as ’a’
in code. This as equivalent to the integer, int, representation of 97.

Listing 1-1: Type of 'a’
void main() {
2 static assert(’a’ = 97);
}

$ dmd examplel.d
$./examplel

In the example above I have introduced a language feature and the equality
operator. static assert will be used throughout this book to demonstrate prop-
erties that are true. It takes what is known as an expression which evaluates
to a boolean, keywordbool. A boolean being a type which hold either true or
false. My expression is inside the parenthesis and uses equality, ==, which is
different from assignment, =. The program will compile and result in no output
when run. However the program fail to compile if you were to change either the
letter used or the number.

D T W N =

1
2

3
4
5

8 CHAPTER 1. GETTING STARTED

Statements are a complete requested operation and usually are ended with a
semicolon. In the code demonstrated static assert is the statement and ’a’ ==
97 is the expression. Expressions are comprised of different operators which
result in need to evaluate the operations and would have no meaning if their
result was not used.

The simplest operators to understand are those used in math. As you can
see from the example below, basic math is quit familiar.

Listing 1-2: Integer Type

void main() {

static assert(2 + 2 = 4);
static assert (b — 3 = 2);
static assert (21 x 2 = 42);
static assert(b / 2 = 2);

$ dmd example2.d
$./example2

Take a closer look at the last statement with division. As mentioned earlier,
the computer uses types to guide the interpretation of what the underlining bits
mean. In this case we are working with the type int. Integers are only whole
numbers and are unable to represent fractions of a whole. So when an operation
is performed on them the result is truncated; it is not floored, brought to the
lowest whole number, or rounded, brought to the nearest whole number. This
can be important to remember when dealing with negative numbers as -3.6 is
truncated to -3, floored to -4, and rounded to -4.

Instead the CPU has a different representation for what is known as a floating
point, and has a number of types: float, double, real. Each of these provide a
different amount of accuracy by increasing the bits used.

1.3.1 Floating Point

A float will consume 32 bits, a double 64, and a real is either 64 or 80 depending
on the maximum representable by the CPU. But these details can be different
or irrelevant depending on the language. For example Java only has double.
Now let us see how we can use these in the language.

Listing 1-3: Floating Point Types

void main() {

static assert (5.0 / 2 = 2.5);
static assert (5.0 / 2 = 2);
static assert(5F / 2 = 2.5);

=W N =

1.4. PRECEDENCE 9

$ dmd example3.d
$./example3

In the new operator /= is equivalent in meaning to # in mathematics; the
exclamation mark is read as "not.” This shows when using a floating point
number the result will not equal two as it does when using integers. The final
assert show how to use a suffix to specify a float literal. The term literal refers
to a hard coded element in the code. But to understand what I mean by that I
must introduce variables.

There is one important note. This code is incorrect. At this time it is not
important and a solution will be introduced later, but for now remember that
checking equality of a floating point is usually not desired. When performing
operations the result will be dictated by how accurate the number is represented.
In more complicated operations instead of returning 2.5 the number could be
2.4999999 (where this is still less accurate than what might be returned) result-
ing in equality being false.

1.4 Precedence

The operator precedence is what defines the order of evaluation for an expres-
sion. What you know from math will be of great help to knowing basic ordering.
Many operators exist which are not part of math.

Listing 1-4: Precedence

void main() {
static assert(3 + 2 x 3 = 9);
static assert((3 + 2) * 3 == 15);

$ dmd exampled.d
$./exampled

For now it is not important to cover all the operators and where they lay in
terms of order of evaluation. Be aware that it exists and the parentheses can be
used to to group evaluation if you are unsure how it will be evaluated.

1.5 Commenting

One of the key aspects to writing a program is communicating. The obvious
communication is happening between the human and the computer. There is
also communication with other programmers. However, we don’t actually care
about them, usually a programmer just needs to write some instructions down
and will have little need to go over the source again once the program has
been completed. The slightly hidden underpinning is that a program is never
complete. The ”other programmers” truly become the original author. Code

10 CHAPTER 1. GETTING STARTED

you write today, will be code you look at tomorrow. As you progress and desire
to create new works, the old will always be guiding you.

Comments are valuable and should be used to exercise explanation rather
than behavior. There are a couple types of documentation that will be written,
documentation comments and code comments. Documentation comments are
for explaining how to use and what it is used for. Code comments are intended
to explain why something has been written.

There is a third type of comment, but is best handled by what is known
as self-documenting code. Code should be written in a way that would make
commenting on it redundant. This relies heavily on naming and structuring of
the code, and as everything can be very subjective. This type of commenting
does not replace the previous two already stated.

D provides a number of options for inserting comments into the code. The
common comment style for C++-, Java and many other languages.

/*
This Comment spans
multiple lines.

*/
// While this is only until the end of the line

The second example is a C style comment, though most C compilers will
accept the first too.

VLS
Documentation Comment

*/
/// Documentation Comment

Documentation comments are used to generate html pages that describe how
to use code. These will be uncommon in this book, but are an important part
of writing code.

/+
Nesting Comment

+/

Nesting comments are uncommon for languages, D provides them and also
have a documentation comment form by adding another plus. The nesting is
important due to the behavior of non-nesting comments.

/%

This is a Comment

/* I want to comment more */

1.5. COMMENTING 11

but now I am not in a comment block
*/

Writing comments at the same time as writing code is difficult. It is recom-
mended that an outline of the program be written in comments. Then fill in the
code to fulfill each comment, leaving the comments. Commenting is something
every programmer struggles with, it is hard to find the right information that
is missing from the code. For this reason, my personal recommendation is to
write comments while reading code too. If it takes some time to figure out what
a piece of code is doing, write down what is found. Comments like "I don’t get
it” or "WTF?” are funny, yet the value for anyone is very limited.

1.5.1 Task Comments

Another use of comments in code is to mark a task which will need completed.
Many IDEs and editors will recognise this hint keyord in a comment.

// TODO: Something to have done

However this is not a good way to keep a task list. One of the best uses is
when writing the tasks within the function/file. As the tasks are implemented
remove the TODO and leave it as a comment for the code. These can be good
in small personal project or even minor things possibly related to code clean
up. If it is between using this or not writing down the thought, use this.

12

CHAPTER 1.

GETTING STARTED

S TR W N

1
2

Chapter 2

Variables, Functions, and
Modules

As mentioned in it is important to make reuse of the code you write.
This is so important we’ll get started on it right away with the three most
common ways to do reuse.

2.1 Variables

With the basics of types we can start storing our values into variables.

Listing 2-1: Variable Introduction

void main() {
auto base = 4;
auto height = 3;

assert ((base/2) * height = 6);

$ dmd example5.d
$./exampleb

This creates two variables base and height and initializes them. A language
feature known as type inference through the use of auto allows the compiler
to decide the type. The variables are used in a mathematical expression to
calculate the area of a triangle, in this case it is six. This code could also be
written by explicitly specifying the types of the variables.

Listing 2-2: Explicit Type Declaration

void main() {
int base = 4;

13

S O W

N O U W N

14 CHAPTER 2. VARIABLES, FUNCTIONS, AND MODULES

int height = 3;

assert ((base/2) % height = 6);

$ dmd example6.d
$./example6

Do to the introduction of variables static assert is replaced by his runtime
equivalent, assert. The static version means that the expression will be evalu-
ated and checked during the compilation of the program. This is not possible
with variables as the values are not know during the compilation. It is prefer-
able to use static assert as errors will be found much sooner, but many times it
will need to be checked during runtime.

Type inferences is extensively used throughout this book and in idiomatic
D, so it is important to understand literals as they have types and will dictate
the type of the variable during inference.

Listing 2-3: Integer Type

void main() {
auto base = 5;
auto height = 3;
assert ((base/2) % height = 6);
assert ((base/2) * height != 7.5);

$ dmd example7.d
$./example7?

This example demonstrates the importance of knowing the types being
stored. Rather than returning the correct answer we are faced with the same
answer as before. This happens because the type of base is int and so the oper-
ation (base/2) performs what is commonly referred to as integer division. And
the result is 2 instead of 2.5. Using the proper literals or specifying the required
type would fix this issue. One of the goals for programming is to build the code
to be reusable and one way to do this is to make a function and call to it.

2.2 Functions

A function is a container of executable code. Much like a book will refer different
chapters for more details, a function is an encapsolation of operations that give
a result.

© 00 J O U W N

—
o

2.2. FUNCTIONS 15

Listing 2-4: Triangle Function
double triangleArea(double base, double height) {
return (base/2) % height;
}

void main() {
auto base = 5;
auto height = 3;

assert (triangleArea(base, height) = 7.5);

$ dmd example8.d
$./example8

In this case we have defined a function called triangleArea which accepts
two values of type double and returns a value of type double. The signature of
a function looks like this.

ReturnType functionName(Parameter list);

I have been avoiding a very important aspect to these examples. The main
function. This is the entry point to the program. It follows the same guidelines
as above, but the return type is void which indicates that nothing is returned.
Its parameter list is also empty meaning nothing is to be passed to it.

2.2.1 Function Contracts

While building a program it is important to consider what the expected input
will be. As the code will be written to handle the expected inputs it will be
good practice to verify the parameters do not exceed those bounds.

As a piece of software is developed many parts of it are restructured, fixed,
or improved in a number of ways. The two most common ways someone will
test code that has been written is by compiling and running it. Once a feature
has been added and tested using this method it becomes neglected as new fea-
tures/behaviors are added. With this method of testing implementing a ”Save
as” feature could also affect ”Save” causing it to perform the same operation.
Since ”Save as” is the new addition it gets the testing and approval of working.

While a large amount of effort goes into designing modularity to enable code
reuse, this does have the drawback of changes making an impact in various areas.
In some cases a feature could work because it relied on a bug that is later fixed,
or purely out of a lack of full understanding on the programmers part. And
this is why regression testing has become a key part of software development.
A very popular form of regression tests is unit testing. In this case a ”unit”
is referring to an encapsulated operation of unspecified size where for a given
input, an expected output should result. For now our units are functions.

© 00 O U i W N

— = = e
UL W N = O

1

16 CHAPTER 2. VARIABLES, FUNCTIONS, AND MODULES

Listing 2-5: Triangle Contracts
double triangleArea(double base, double height)
in {
assert (base > 0);
assert (height > 0);

} body {
return (base/2) % height;
}

unittest {
assert (triangleArea (5, 3) = 7.5);
assert (triangleArea (6, 10) = 30);
}

void main() {

}

$ dmd -unittest example9.d
$./example9

This book will continue to use these and other techniques to help demon-
strate how a function operates and the manner in which to build tested code.
The in contract is checking that the values passed into our function are positive
numbers. The reason for this is because you really can’t have a negative length
so it would be very likely that the calling code has something wrong and needs
correcting.

After the function there is a block named wunittest which is not run with
a normal compiler call. Please read your compilers documentation on how to
enable Unit Tests. Once compiled with Unit Tests on, this code will be run
prior to code in main. If one of the tests fail the program will terminate with
an error massage. These blocks of code are able to have their own variables and
usually consist of assertions that should always be true.

2.3 Modules

There is one more item to cover to create a usable program, instead of just
a bunch of tests. Modules are similar to functions because they are another
way to make reusable code. They are basically a collection of functions and
variables that can be pulled into another module. So far the examples have all
consisted of a single module. The module name is inferred by the file name,
but it is recommended that one be specified in the programs you write, here is
a modified version of the things we have learned.

Listing 2-6: Unittesting Triangle Area

module triangle;

—_ =
= O © 00~ O U W N

D DD = = e s e e e e
= O © 00~ O UL W N

© 00 J O U b W N

—
o

2.3. MODULES 17

double triangleArea (double base, double height)
in {
assert (base >= 0);
assert (height >= 0);
b body {
return (base/2) % height;
}
unittest {
assert (triangleArea (5, 3) = 7.5);
assert (triangleArea (6, 10) = 30);

}

void main() {
auto base = 5;

auto height 3;

assert (triangleArea(base, height) = 7.5);

$ dmd -unittest example_triangle.d
$./example_triangle

The module provides a name space for our triangle function. What this
means is that the full name is actually triangle.triangleArea. But a fully qualified
name is not needed; triangleArea is in the current name space. Modules allow
code to be organized into common collections that are used by other collections.
Now main() can move into its own module.

Listing 2-7: Triangle Main Module

module main;

import triangle;

void main() {
auto base = 5;

auto height = 3;

assert (triangleArea(base, height) = 7.5);

Listing 2-8: Triangle Module

module triangle;

© 00 J O U b W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

[t
oo

CHAPTER 2. VARIABLES, FUNCTIONS, AND MODULES

*

Calculates the area of a triangle given
the length of the base and height.

The base and height must be positive numbers
greater than zero.

Parameters:
base = the length of the triangle base
height = the height of the triangle

¥ ORK K XK X K K X X

*

*
/
double triangleArea (double base, double height)
in {
assert (base >= 0);
assert (height >= 0);
} body {
return (base/2) % height;
}

unittest {
assert (triangleArea (5, 3) = 7.5);
assert (triangleArea (6, 10) = 30);

$ dmd -unittest example_main.d example_triangle.d
$./example_main

By using import the compiler makes the symbols (function, variables, etc.)
of the specified module available. There can be multiple files which import the
same module allowing for greater reuse of code. Notice that each file is being
passed to the compiler. In my case our triangle module is in example_triangle.d
and the main module is in example_main.d. The output program will be named
after the first file that is passed, it is customary, but not required, that the file
contain the main method.

The triangleArea function has also been given a documentation comment.
While very basic these comments are very important to describing what a func-
tion is for and how it is used. The depth needed for a good comment will vary
depending on the depth of what is being commented. In this case the descrip-
tion of the parameters is probably unnecessary detail as it is just a different
representation of the summary. For the DMD compiler the html documentation
can be output into a directory called doc by passing the flag -Dddoc during
compilation.

2.4. COMMON ERRORS 19

2.3.1 Packages

2.4 Common Errors

When you begin working with multiple files there a few things that may get
missed and it is important to know how your compiler informs you of these
mistakes.

Forgetting the main function:

Listing 2-9: Undefined Reference to Start

double triangleArea (double base, double height) {
2 return (base/2) % height;
}

$ dmd examplel3.d
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1ib/libpho
bos2.a(dmain2_45f_1a5.0): In function ‘_D2rt6dmain24main
UiPPaZi7runMainMFZv’ :

src/rt/dmain2.d: (.text._D2rt6dmain24mainUiPPaZi7runMainM
FZv+0x18): undefined reference to ‘_Dmain’
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1ib/libpho
bos2.a(thread_192_1b8.0): In function °‘_D4core6thread6Th
read6__ctorMFZC4core6thread6Thread’ :

src/core/thread.d: (.text._D4core6thread6Thread6__ctorMFZ
C4core6thread6Thread+0x26) : undefined reference to
‘_tlsend’

src/core/thread.d: (.text._D4core6thread6Thread6__ctorMFZ
C4corebthread6Thread+0x31): undefined reference to
‘_tlsstart’
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1lib/libpho
bos2.a(thread_1a2_6e4.0): In function ‘thread_attachThis
src/core/thread.d: (.text.thread_attachThis+0xf4):
undefined reference to ‘_tlsstart’

src/core/thread.d: (.text.thread_attachThis+0xff):
undefined reference to ‘_tlsend’
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1ib/libpho
bos2.a(thread_180_1b8.0): In function °‘_D4core6thread6Th
read6__ctorMFPFZvmZC4core6thread6Thread’ :
src/core/thread.d: (.text._D4core6thread6Thread6__ctorMFP
FZvmZC4core6thread6Thread+0x2b) : undefined reference to
‘_tlsend’

src/core/thread.d: (.text._D4core6thread6Thread6__ctorMFP
FZvmZC4core6thread6Thread+0x36) : undefined reference to
‘_tlsstart’
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1lib/libpho

TR W N

20 CHAPTER 2. VARIABLES, FUNCTIONS, AND MODULES

bos2.a(thread_181_1b8.0): In function ‘_D4core6thread6Th
read6__ctorMFDFZvmZC4core6thread6Thread’ :
src/core/thread.d: (.text._D4core6thread6Thread6__ctorMFD
FZvmZC4core6thread6Thread+0x37) : undefined reference to
‘_tlsend’

src/core/thread.d: (.text._D4core6thread6Thread6__ctorMFD
FZvmZC4corebthread6Thread+0x42) : undefined reference to
‘_tlsstart’
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1lib/libpho
bos2.a(deh2_441_525.0): In function ¢_D2rt4deh213__eh_fi
nddataFPvZPS2rt4deh29FuncTable’ :

src/rt/deh2.d: (.text._D2rt4deh213__eh_finddataFPvZPS2rt4
deh29FuncTable+0xa): undefined reference to ‘_deh_beg’
src/rt/deh2.d: (.text._D2rt4deh213__eh_finddataFPvZPS2rt4
deh29FuncTable+0x14) : undefined reference to ‘_deh_beg’
src/rt/deh2.d: (.text._D2rt4deh213__eh_finddataFPvZPS2rt4
deh29FuncTable+0x1le) : undefined reference to ‘_deh_end’
src/rt/deh2.d: (.text._D2rt4deh213__eh_finddataFPvZPS2rt4
deh29FuncTable+0x45) : undefined reference to ‘_deh_end’
/usr/lib/gcc/x86_64-1linux-gnu/4.7/../../../../1lib/libpho
bos2.a(thread_17d_713.0): In function ‘thread_entryPoint
).

src/core/thread.d: (.text.thread_entryPoint+0xal):
undefined reference to ‘_tlsend’

src/core/thread.d: (.text.thread_entryPoint+0xac) :
undefined reference to ‘_tlsstart’

collect2: error: 1d returned 1 exit status

-—- errorlevel 1

The linker barfs a lot of information on this one, but you’ll notice that one
of the last things said is, ”undefined reference to ’_tlsstart.” And one of the
first things is "undefined reference to ’_Dmain.” These exact message my differ
depending on the linker used, but the idea is that there is no starting location
for your program (the main function).

Forgetting the import statement:

Listing 2-10: Undefined Identifier

void main() {
auto base = b5;
auto height = 3;

assert (triangleArea (base, height) = 7.5);

$ dmd exampleld.d
examplel4.d(6): Error: undefined identifier triangleArea

2.4. COMMON ERRORS

Providing incorrect types:

Listing 2-11: Cannot Implicitly Convert
1 void main() {
2 int foo = 64.42;

3}

$ dmd examplelb5.d
examplel5.d(3): Error: cannot implicitly convert
expression (64.42) of type double to int

21

22

CHAPTER 2. VARIABLES, FUNCTIONS, AND MODULES

Chapter 3

A Brief History

After some mostly unknown events that happened in the past, there was a brief
period when a bunch of water filled sacks, which we will call human beings, had
created what many believed to be the "way of the future.” I guess they just
didn’t realize just how long ”the future” was.

3.1 The Dinosaurs

Konrad Zuse in 1941 developed the first programmable computer. It was
promptly destroyed in 1943 due to some disagreements between countries. Nee-
dles to say this was be for my time and programming was done on punched
celluloid tape. Not the greatest medium for writing a program, but on the plus
side the expected operations at that time were purely for number crunching
(math problems). http://www.idsia.ch/ juergen/zuse.html

Another major player in defining and progressing what it means to be a
computer was Allen Turing. Most notably was the definition he gave referred
to as the " Turing Machine.” While not practical design for a machine (who has
infinite memory) it has become the basis for classifying programing languages
as "Turing Complete” which in pop culture terms from the 1940’s, ” Anything
you can do I can do also, I can do anything which you are able to do too.”

3.1.1 Assembly

Assembly is a one to one correlation of instruction to machine operation. The
detail required to write in assembly (ASM) is to the point that a load from mem-
ory must specify the exact register to hold it. Math operations aren’t performed
on numbers, they are requested to be run against multiple registers. Assembly
is not really a specific language, it is representation of the hardware instruc-
tions; since hardware can contain a vastly different instruction set, assembly for
one machine architecture could have a completely different representation for
its instructions.

23

24 CHAPTER 3. A BRIEF HISTORY

3.1.2 FORTRAN

Enter FORTRAN. John Backus was not fond of this and decided to represent
higher level operations that would be translated into the instructions provided
by the hardware. Higher level refers to being further from the details. At a
low level you might see trees, water, and roads; the higher you are the less you
would see until it eventually becomes Earth. This representation of the Earth
would require something to translate this request for an Earth into the parts
that actually make up an Earth. Thus the first compiler was written to translate
FORTRAN to machine code.

And since some people enjoy having years, 1957.

http://en.wikipedia.org/wiki/Fortran

3.1.3 C

1972

C is yet another abstraction to the instructions provided by the hardware.
Needles to say, it isn’t going anywhere. This language built along side of the
Unix operating system. It maintains a very close relationship to what is actually
happening on the hardware. It has been an influencer to a great number of
languages and the syntax has been claimed by many as well. D tries very
hard to maintain that ”if it looks like C then it either compiles with the same
semantics or it fails to compile.” This is not always true, but is very close.
Where as C++ had to compile all C code without changing anything.

3.2 The Modern Times

While technology has been progressing very rapidly the design, principles, and
techniques for programming languages haven’t changed much. And in the com-
puter world, the dinosaurs didn’t all die out; which should not be a surprise
as there was no catastrophic event which killed off all uses of these languages,
requiring us to start from scratch.

What you'll see is different combinations of things already done one place
or another. This is not to say there hasn’t been major improvements, only to
remind that improvements are incremental, its just that computers are really
fast at incrementing now.

3.2.1 1Is D a Duck?

There is an old test of no exactly know origin, ”If it looks like a duck, swims
like a duck, and quacks like a duck, then it probably is a duck.” And it is the
principle behind what is known as Duck Typing. In this situation a type is only
defined by what you can do with it and not what it has been declared to be.
This is a behavior found in Python, however it is not the type system used in
D. However templates in D do provide a means that resemble this behavior.
http://en.wikipedia.org/wiki/Duck_test

3.3. THE RISE AND FALL OF D 25

There is no right answer as both sides have there benefits and drawbacks.
The choice to do static typing is one that provides more guarantees prior to
ever running any code. And some from the dynamic side would argue that
these guarantees are not enough benefit for the overhead they create.

Every variable in D has a specified type and that type can never be changed.
It can be a burden to specify the type every time, so D has created a very good
type inference as demonstrated earlier. There are limits just as there are clouds
in the sky. Todo: Should not be here An interesting side effect of having an
inferred return type was Voldemort Types discovered by Andrei Alexandrescu
as these are types which can not be named.

3.3 The Rise and Fall of D

D has been the creation of Walter Bright and Andrei Alerandrescu to fulfill
their masochistic desires. It has also been influenced and even developed by
a small community of avid users that joined to make both Mr. Bright and
Alexandrescu’s life miserable. I could be wrong about this history though;
it has been in development since 2001 with a version one release in 2007 and
perhaps it was actually a joy to use and members not only desired for its success,
but also didn’t care as it was meeting some needs and doing so with a fun and
engaging twist.

3.3.1 Walter Bright

Walter is a compiler writer with a background in mechanical engineering. He
was once employed at Boeing and creator of the Empire video game. At a
time when everyone was creating compilers that would translate C++ source
code into C to finally be compiled as machine code, Walter wrote the first that
compiled directly to machine code. Having enjoyed this great challenge and
monster to upkeep, he decided that he could design and build a language that
would be better and of course easier to implement.

While he was calling this new language the "Mars Programming Language”
(his company being DigitalMars) when discussing his ideas with friends, he
couldn’t shake their referencing and calling it "D.”

Much of Walter’s original goals you could say have been revised since his
initial go. And much change was mounting in 2006 when.

3.3.2 Andrei Alexandrescu

Alexandrescu came to the scene to help create a language which would address
problems of the future today as well as the past.

Andrei came to us as a well known member of the C++ community. He came
from the past, as the technology being developed in the US was slow to reach
Romania. He did survive the time warp and was able to author a successful
book, "Modern C++ Design.”

26 CHAPTER 3. A BRIEF HISTORY

He and Walter got to talking. Andrei wanted to take his knowledge and
understanding, which he has graciously shared with the world, and packaging it
into his own language. Walter advised that this was a very bad idea, and spoke
of the deep lagoon which awaited. You see this could have been bad for business,
Walter didn’t want competition, or he really did know that many languages die
during infancy because of the upfront work required to get a language up and
running. Whatever the real reason, Andrei was convinced to join D and bring
his offerings to the table.

And that is the story of the three wolfs and the ugly duckling.

3.3.3 The Community

As great as the D dictators have been, D would not have all the problems it
does without the work, however subtle, from those members of the community
past, present, and future.

I am afraid to provide this short list as many more have contributed to the
progress of D and would be a shame to miss some of the influences that make
a big impact but with little visibility in correlation. In alphabetical order:

Bartosz Milewski o Kris Bell

Brad Roberts

Lars Kyllingstad

David Simcha Leonardo M

Michael Parker

Don Clugston

JTain Buclaw

Sean Kelly

e Jonathan Davis Steve Schveighoffer

3.3.4 Where D Has Gone
And now, for the sadist part of D’s history, the story of its final demise.

N O U W N

Chapter 4

The User Interface at the
Console

Now it is time to interact with the user using standard input and output, or
stdio. This module is part of the standard library, Phobos.

4.1 Hello World!

One of the first programs generally written by a programmer after installing
a compiler is the "Hello World” program. It is likely you used this program
when following someone else’s instructions for installing the D compiler. This
simple program provides verification that the compiler is properly set up to
access the standard library and provides the programmer with a visual cue that
the program was correctly created.

Listing 4-1: Standard Output
module hello;

import std.stdio;

void main() {
writeln (" Hello World!”);
}

$ dmd example_hello.d
$./example_hello
Hello World!

Documentation can be found on http://www.dlang.org/phobos/

By importing stdio, which is part of the std package, a number of func-
tions become available. We are taking advantage of code written by someone

27

© 00 O Ot i W N

—_ =
N = O

28 CHAPTER 4. THE USER INTERFACE AT THE CONSOLE

else. The function writeln is written in a file std/stdio.d where the folder rep-
resents a package of modules. The standard library comes with every compiler
implementation.

4.2 Listen to Me

To improve the computers communication skills it is important that it also learn
to listen.

Listing 4-2: Standard Input

module username;
import std.stdio;

void main() {
writeln ("Hello World!”);

write (” Please enter your name: 7);
auto name = readln ();
writefln (" Hello %s and welcome to my world!” , name);

$ dmd example_username.d
$./example_username
Hello World!
Please enter your name: Jesse
Hello Jesse
and welcome to my world!

Haha, you thought I’d go over only one new function! Instead I have intro-
duced, write, readln, and writefln respectively. The ’In’ stands for line, so the
write method is the same as writeln, but does not place a new line on the end...
The most interesting is writefln and writef. The ’f’ stands for format and means
the first argument will be a format string. This makes it easy to build a layout
of what to output and insert variables into the needed location. In this case we
are printing the name in the location of %s. There are other formatting options
for spacing, alignment, and when printing numbers which you can reference at
Using %s will work for all types and recommended unless you need
to change formatting. You can also produce a formatted string, and not have
it output to stdout by using std.string.format. (Note that I am specifying a
function format found in the package std, module string.)

One very noticeable aspect of the output is that it doesn’t match what our
format string specified. . . well actually it does. readin takes the users input and
stores it in name, at the very end of enter the users name return is hit. This

© 00 J O U = W N =

e e e e
DT W N = O

U W N =

4.2. LISTEN TO ME 29

new line character is captured by readln and thus printed where we ask it to
be. The function std.string.strip can be used to remove this trailing character.
Being able to display data makes our previous work with triangleArea even
more useful since we are able to display answers. Being able to ask for input from
the user lets us get values from the user instead of hard-coding the question.
But as you will see it isn’t as straight forward as passing in the read values.

Listing 4-3: Triangle Calculator
import std.stdio;

import triangle;

void main() {
writeln ("Area of Triangle Calculator”);
writeln ();

write (” Triangle Height: 7);
auto height = readln ();

write(” Triangle Base: 7);
auto base = readln ();
writeln (" Area: 7, triangleArea(base, height));

$ dmd examplel8.d example_triangle.d

examplel8.d(16): Error: function triangle.triangleArea
(double base, double height) is not callable using
argument types (string,string)

examplel8.d(16): Error: cannot implicitly convert
expression (base) of type string to double
examplel8.d(16): Error: cannot implicitly convert
expression (height) of type string to double

This code fails to compile because input from the user will be of type string
and what we really want is to pass doubles to triangle function. To do this we
use yet another library function. There are actually two functions which can be
used for this purpose and it all depends on the goal you have when getting user
input.

Listing 4-4: Triangle Calculator

import std.conv;
import std.exception;
import std.stdio;
import std.string;

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21

30 CHAPTER 4. THE USER INTERFACE AT THE CONSOLE

import triangle : triangleArea;

void main() {
writeln (" Area of Triangle Calculator”);
writeln ();

write (” Triangle Height: 7);
auto height = to!double(strip (readln ()));
enforce (height > 0, "Height must be a positive”);

write (” Triangle Base: 7);
auto base = to!double(strip(readln()));
enforce (base > 0, "Base must be a positive”);

”

writeln ("Area: 7, triangleArea(base, height));

}

$ dmd examplel9.d example_triangle.d
$./examplel9
Area of Triangle Calculator

Triangle Height: 9
Triangle Base: 3
Area: 13.5

Now we have program which can be run to calculate the area of a triangle
for most numbers. The import of triangle has another feature found in D, this is
selective imports. Modules can contain many functions, using selective imports
can prevent conflicts between modules. This book will make use of them so you
can more easily see where used functions are coming from.

The use of enforce is somewhat redundant as triangleArea already has con-
tracts. There is an important distinction for there usage. The program is
requesting input from the user, this is an untrusted source. The use of assert
is to identify locations that are bugs in your program, it is incorrect for the
program to call triangleArea with numbers less than one. However, it is not a
bug in the program if the user enters a negative number for any of the values.
To ensure that this untrusted source does not cause the program to have a bug,
the use of enforce allows an exception to be raised. There are many ways to
deal with invalid inputs, and using exceptions tend to be the least user friendly
but are great for personal projects.

An alternative would be to move these enforce statements triangleArea. The
decisions to be had can come down to design choices and personal view. In this
case it is considered wrong for triangleArea to be called with untrusted input.

SO W N

1
2
3
4

4.3. A WORD ON DOUBLE 31

4.3 A Word on double

The double only stores 64 bits, meaning there is only so many numbers that
can be represented before it is all used up. The language can tell you the high
and low of representable values for all integral types.

Listing 4-5: Limits of Double

void main() {
pragma (msg, ”Minimum of double:”);
pragma (msg, double.min);
pragma (msg, "Maximum of double:”);
pragma (msg, double.max);

$ dmd example20.d
Minimum of double:
2.22507e-308
Maximum of double:
1.79769e+308
$./example20

So for the most part there isn’t anything to worry about. But remember
it may come up at some time. There is also another little thing that would
make the program nicer to use, and that is waiting for the user to exit. We
want someone to enter many requests instead of exiting after the first one. This
requires a loop.

Did you see! This time running the program didn’t do anything, instead we
were given the values we requested while the compiler was running. Pragma is
a command to the compiler and in this case it was asked to print out several
messages (msg). This can only print on values known at the time of compile. It
will get some more use in the feature.

4.4 Looping

A program starts at one point and continues until it runs out of instructions.
During the life of the program it may require executing the same source code
with slight modifications. While you may enjoy predicting how many times a
user will want to calculate triangle areas when writing the program, usually it
is better to get that information from the user.

Listing 4-6: Triangle Calculator

import std.conv : to;

import std.exception : enforce;

import std.stdio : write, writefln, readln;
import std.string : strip;

© 0 g O L

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

32 CHAPTER 4. THE USER INTERFACE AT THE CONSOLE

import triangle;

void main() {
string answer;

while (true) { // Loop with no exit condition
write (" Enter the height or ’'quit’ when done: 7);
answer = strip (readln ());
if (answer =— " quit”)
break; // Break the loop

auto height = to!double (answer);
enforce (height > 0, "Height must be a positive”);

write (" Please enter the base: 7);
answer = strip (readln ());

auto base = to!double(answer);
enforce (base > 0, "Base must be a positive”);
writefln (" Area is %.3f7,

triangleArea (base, height));

}

$ dmd example2l.d example_triangle.d

$./example21

Enter the height or ’quit’ when done: 7
Please enter the base: 13

Area is 45.500

Enter the height or ’quit’ when done: quit

The while loop takes an expression and continues to run while it evaluates
to true. In this case I have provided true, which ironically always evaluates to
true. This is because the necessary information to decide if the loop should
continue or not is missing. Instead input from the user is used to make this
decision by having them enter ”quit”. The break statement provides a means
to stop execution of a loop, similarly a loop can be started from the beginning
by using continue.

The introduction of a new function std.string.strip is due to a hidden char-
acter that represents the return/enter hit by the user. These characters come
from a time when teletypewriters (TTY) were used. These devices required the
transmission of a carriage return, which would bring the typewriter to a state
for entry on the left side of the paper. The other operation was a line feed,
which move the paper up for the next line of entry. Computers have continued
to use these control codes, but it will depend on the operating system which

© 00 N O U W N

W W NN DN DNDNDDNDNDDNDN DN = = o e e e e
— O © 00 O ULk WN O ©OoWO ULk WO

4.4. LOOPING 33

one is preferred. *nix machines have chosen the line feed, represented as

n in a string. Apple choose the carriage return, represented as

r in a string. Microsoft chose the combination of a carriage return and a line
feed. Though remember that files can be transfered between operating systems
and Apple has officially changed to using line feed, so it is best just to support
all of them as the same.

And finally when the answer is printed it is formated with %.3f. This says
to print a floating point number with three digits after the decimal point. You
can find more details at

Sometimes having a more elaborate format for input can make things nicer.
The function std.conv.parse will do a partial conversion of the input leaving the

end. This is in contrast to std.conv.to which throws an exception as covered in
7?7

Listing 4-7: Triangle Calculator

import std.algorithm : munch;

import std.conv : parse;

import std.exception : enforce;

import std.stdio : write, writeln, writefln, readln;
import std.string : strip;

import triangle;

void main() {
string answer;

while (true) { // Loop with no exit condition
write (" Enter height ,base or quite when done: ”);
answer = strip (readln ());
if (answer = 7 quit”)
break; // Break the loop

auto height = parse!double (answer);
if (height <= 0) {
writeln (" Height must be a positive.”);

continue ;
}
answer .munch(”,”); // tasty
auto base = parse!double (answer);

if (base <= 0) {
writeln (”Base must be a positive.”);
continue;

}

writefln (7 Area is %.3f7,

32
33
34

ST W N

34 CHAPTER 4. THE USER INTERFACE AT THE CONSOLE

triangleArea (base, height));

$ dmd example22.d example_triangle.d

$./example22

Enter height,base or quite when done: 52,72
Area is 1872.000

Enter height,base or quite when done: quit

Instead of using enforce the height and base have been checked using an
if and the while loop is started from the beginning using continue. This will
usually provide a better user experience and demonstrates why triangleArea
does not except untrusted input, the program needs to handle invalid input as
part of its usual flow rather than through exception handling.

At this point the fundamentals for programming have been introduced. The
important pieces to take from this have been variables, types, functions, and
looping. This book will continue to use these as more is being introduced.

4.4.1 Looping Without Loops

Recommended Later Reading
Loops are actually a very useful abstraction. It is an abstraction because most
hardware does not have any notion of a loop. Instead it provides a means to
jump execution to another location in memory. A language that really modeled
this simplicity of moving through code was BASIC. Each line required a num-
ber and at any point a request could be made to goto any line and continue
execution from there.

The goto statement has been around a while and has had criticism due to
its ability to obscure program flow and dangers of skipping vitally important
code to keep a sane state. Many languages have chosen not to include goto due
to this reputation, while D has chosen to make them safer by restricting the
”distance” of the jump.

In most cases goto is not needed as we have better constructs to handle most
situations. However there are places that goto makes for a cleaner statement.
Minor uses of goto will be used in this book, but for now this is an example
of functional code, but very bad design to demonstrate the operation of this
statement.

Listing 4-8: Looping with Goto
import std.stdio;
import std.string : strip;

void main() {
string name;
writeln (7" Welcome”);

© 00

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

4.4. LOOPING 35

start:
goto ask;
getName:
name = strip (readln ());
goto checkExit;
print:
writefln ("Now give me your money %s!”, name);
goto start;
unused :
writeln ("You’ Il never see me.”);
ask:
write ("What is your name? ”);
goto getName;
checkExit :
if (name != 7 quit”)
goto print;
}

$ dmd example23.d

$./example23

Welcome

What is your name? Jesse

Now give me your money Jesse!
What is your name? quit

D uses a labeling system. A line of code can be labeled by using a valid
identifier name followed by a colon. The label is then used in the goto statement.

You will likely notice that following the program flow is more difficult and
while similar to making a function call, the calls are embedded making the loop
very hard to see at a glance.

36

CHAPTER 4. THE USER INTERFACE AT THE CONSOLE

Chapter 5

Arrays and Associative
Arrays

Programming works by processing data; storing that data is important and
when you have a lot of it, simple variables don’t cut it. An array is a collection
of data that is stored sequentially. Usually it is a contiguous block of memory,
which is what is used in D. We will learn about Arrays at a low level in the
chapter [Pointers, Arrays and Structures|

5.1 Array

Let us build a simple word replacement game.

Listing 5-1: Mad Libs

import std.stdio : writefln, writef, readln;
import std.string : strip;

auto paragraph = ”"Programming works by processing %s;
"storing the %s is %s and when %s has a lot of it
"simple %s don’t cut it.”;

auto requests = [”"plural noun”,
?adjective”
”name”
"plural noun”];

void main() {
string [|] words;

foreach (req; requests) {
writef (7 Please enter a %s: 7, req);

37

18
19
20
21
22
23

38 CHAPTER 5. ARRAYS AND ASSOCIATIVE ARRAYS

words "= strip (readln ());

}

writefln (paragraph, words[0], words
words [1], words[2], words]|

(0],
31);

$ dmd example24.d

$./example24

Please enter a plural noun: fish

Please enter a adjective: slippery

Please enter a name: Harry Potter

Please enter a plural noun: daggers

Programming works by processing fish; storing the fish
is slippery and when Harry Potter has a lot of it,
simple daggers don’t cut it.

This approach doesn’t scale very well, but that is ok as I have some important
things to say about it.

5.1.1 Selective Import
5.1.2 Global Variables
5.1.3 Array Litterals

There are two global variables which are declared outside of any function. The
"story” is stored in paragraph, which you should note has %s throughout it.
An array of string using an array literal follows paragraph. Each element is
separated by a comma and the whole thing surrounded in square brackets. An
array literal of integers would look like [1,2,3,4].

5.1.4 Foreach

The type for a string array is written string//, used when declaring words. This
will store the values provided by the user. The user input is concatenated to
the end of words inside a foreach loop. The structure of a foreach loop is as
follows.

foreach(Type Variable; Collection) { }

The Type can usually be inferred, the Variable is what will store each ele-
ment, and the Collection is any type that can be iterated. For details on iterable
types and using foreach check out [[terators

N O U W N

© 0 N DU W N

11
12
13
14

5.2. ASSOCIATIVE ARRAY 39

5.1.5 Concatenation

The concatenation operator, tilde (), provides a means to combine two arrays
and is commonly used with string types. By using = the value on the right
is being appended to the end of array words. This operation may or may not
reallocate and move the array to accommodate the needed space. Details on
what this means is in the|Pointers, Arrays and Structures|chapter. You can also
combine a number of other operators with assignment.

Listing 5-2: Assignment and Operation

void main() {

auto a = 10;

a /= 2;
assert (a = 5);
a += 1;
assert (a = 6);

$ dmd example25.d
$./example25

Another way to write the concatenation would have been like the following,
however in this case it would always reallocate memory for the array.

words = words ~ readln().strip;

5.2 Associative Array

Let us take a look at another way to write the same program changing a few
things.

Listing 5-3: Mad Libs
import std.stdio : writefln, writef, readln;
import std.string : strip;
auto paragraph = ”Programming works by processing %s; -
"storing the %s is %s and when %s has a lot of it
"simple %s don’t cut it.”;

string [string] requests;

void main() {
requests = [”"plural nounl”:”” |
7adjective” "7,
7 Ilallle” :',', ” ,
"plural noun2”:77];

15
16
17
18
19
20
21
22
23
24

40 CHAPTER 5. ARRAYS AND ASSOCIATIVE ARRAYS

foreach (speech, ref req; requests) {
writef (" Please enter a %s: 7, speech);
req = strip (readln ());

}

writefln (paragraph, requests|[” plural nounl”],
requests [plural nounl”],
requests [adjective”],
requests ["name”], requests[” plural noun2”]);

}

$ dmd example26.d

$./example26

Please enter a name: Billy Blaze

Please enter a plural nounl: tazers

Please enter a plural noun2: pogosticks

Please enter a adjective: adventurous

Programming works by processing tazers; storing the
tazers is adventurous and when Billy Blaze has a lot of
it, simple pogosticks don’t cut it.

For this we replace the need for words by using an associative array (also
known as hashtables, dictionaries, key-value pairs). One trade-off with this
approach is that numbers had to be added so that the keys were all unique. It
would be possible to strip them off before asking the question. A literal for an
associative array is surrounded by brackets like an array, but also provides a
key in the form Key:Value. In this case string is used for the keys and values
and the value is being set to an empty string. Use of any other type for key and
value is possible, but it must be consistent throughout the whole array.

I have also added to the foreach with an extra variable and the use of ref.
Since an associative array has the key and value for each item you can request
them by providing two variables, the key is stored in speech and value in req
which is determined by the order they appear. The value is requested by refer-
ences, this allows changing its value in the loop and the change being reflected
in the associative array.

The last change is instead of indexing with a number that is done with
arrays, indexing uses a string which is equal to the key desired.

The thing to know about associative arrays is that they will use a magnitude
more memory then the items they hold and iterating over the elements does not
have a defined order.

5.3 Common Errors

A foreach loop was used to modify data which was stored in an associative array.
This was possible because we asked for a reference to the data by preceding the

N O Ut W N EN (< <) BTN JUR N R

ST W N =

5.3. COMMON ERRORS 41

variable name with ref. Had this been left off the change would not be visible
from the container being processed.

Listing 5-4: Foreach by Value

void main() {
auto arr = [1,2,3,4];
foreach (val; arr) {
val = val x 2;
}

assert (arr = [1,2,3,4]);

$ dmd example27.d
$./example27

Using ref:

Listing 5-5: Foreach by Reference
void main() {
auto arr = [1,2,3,4];
foreach (ref wval; arr) {
val = val % 2;
}

assert (arr = [2,4,6,8]);

$ dmd example28.d
$./example28

Preventing modification:

Listing 5-6: Foreach over Constant
void main() {
auto arr = [1,2,3,4];
foreach (const int val; arr) {
val = val x 2;
}

$ dmd example29.d
example29.d(5): Error: variable example29.main.val
cannot modify const

Due to an implementation bug for my compiler the type was needed to get
this to print the correct compiler error.

42

CHAPTER 5. ARRAYS AND ASSOCIATIVE ARRAYS

Chapter 6

The Compilation Model

It is time to remove a little bit of magic from the process of creating a program
out of source code. This was touched on as part of some Common Errors,
notably in 2.4l The compiler is actually part of an ecosystem and many times
the lines become blurred and hard to distinguish. These are the stages going
from the higher level component to the details of that component.

1. Build system

(a) Maintain program/library dependencies

(b) Execute commands resulting in a usable program/library
2. Compiler

a) Lexical Analysis

(a)

(b) Parsing

(¢) Language translation
)

(d) Optimizations
3. Linker
(a) Combine machine code from multiple locations
(b) Optimizations
Each stage is feeding into the next and interacting with one may not require
explicit interaction for the next. Keep these stages in mind when requesting
help, it is not necessary to know which stage has failed only that enough infor-

mation should be provided so that someone else can help identify it.

43

44 CHAPTER 6. THE COMPILATION MODEL

6.1 Asking for Help

Provide your kind problem solver with as much relevant information as possible.

e A small segment of code which demonstrates the problem.

Command used to compile.

The error message.

Any steps you may have already taken.

Additional information that my be relevant.

Step one directs your attention to what your expectations are of working
code and can lead to self answers. The code should be as small as possible as
this eliminates unneeded details for willing to guide you to an answer. And
once it is explained you’ll have a nice concise code example of what not to do.
However, if the error message is one you do not understand, it may be best to
skip this in order to learn how the code should be reduced.

The command which is causing issues can be very important. This speaks
to the compiler being used and other missing flags that could be needed to help
resolve the problem.

An error message is vital to solving any problem as it gives direction. To
say ”the program below doesn’t compile.” limits the ability to address the issue
you’re having. Someone could easily take the time to place your code in a file
and compile and run. There is little more than ”works for me” to report back.
And this statement is actually very specific to where the problem lies, though
many will assume you could mean it doesn’t link. Saying it doesn’t compile
indicates that the source code is being reported as invalid, something has failed
during lexing or parsing.

It shows good faith to have attempted and search for a solution to the
problem. The problem is unlikely to be unique, though it is understandable
that someone new will have trouble locating a solution. Learning how to read
and search for problems is very valuable so make an attempt even when it is
small.

Finally, if you think there is something that could have influenced your
problem state what it is. What operating system is used? Did it compile before
upgrading to a new version of the compiler?

Be considerate to those taking their time to help. You won’t have to include
these for every single question; as you learn more it will be easier to identify
where relevant information is. And people will guide you with further questions
when needed.

6.2. LINKER

6.2 Linker

6.3 Compiler

6.4 Build System

45

46

CHAPTER 6. THE COMPILATION MODEL

Chapter 7

Pointers, Arrays and
Structures

Now that a basis for programming has been presented to ”get things done” it is
time to learn about things closer to the machine. This chapter will be similar to
learning C, but remember that there are things the C compiler will allow that
D will require to be explicitly stated.

Let us look at the behavior of value types and how to work with pointers.

Listing 7-1: Using Pointers

int k

void main() {

}

void triple (int

}

triple (
assert (

); // Pass the value 6
= 6); // Is not tripled

~ =~

triple(&k); // Pass an address to k
assert (k 18); // Is tripled

k) |
k =k + k + k;

void triple (intx k) {

}

xk = xk + xk + xk;

$ dmd example30.d
$./example30

47

0 O Ot W N

48 CHAPTER 7. POINTERS, ARRAYS AND STRUCTURES

Here are two functions one which takes an integer and one which takes a
pointer to an integer. There are three important things to remember when
dealing with pointers. One is that the type for a pointer is denoted with a
asterisk, SomeType*.

A pointer is a location in memory. Consider the duodecimal system. The
library will organize its books and provide a set of letters and numbers to identify
the location any given book can be found in the library. Similarly the memory
in the computer has an associated number for each location.

Variables have a location in memory, when a variable is used the value at
that location is then retrieved and used in the operation. Pointers just store
that address into a variable, and yes they also have a memory location which
can be stored in a variable.

The second thing to remember is the address is taken by the address of
operator &. And finally you are able to get the value at the address by using
the dereference operator *. Here are some rather useless examples of using these
operations.

Listing 7-2: Using Pointers

void main() {

int num = 7;

int* pnum = # // Address of num assigned to pnum
int num2 = x# // Store num’s value in num?2
xpnum = 5; // Assign 5 to the location pnum refers
assert (num = 5);

assert (num2 =— 7);

}

$ dmd example3il.d
$./example3l

Note that line four is equivalent to int num2 = num;.

7.1 Binary

Remember a pointer is only a variable which is storing an address for a location
in memory. A memory address is just a number, though usually a fairly large
number. For this reason it is simple to observe the value of a pointer. The
value however is not represented using the decimal system, instead hexadecimal
is used.

Computers run off of the simple notion of ” power here” and ”no power here.”
This binary system makes it natural to store numbers in powers of two. Similarly
we have ten fingers making it natural to ”store” numbers of ten (decimal). Let
us take the simple task of counting to ten: 0, 1, 2, 3,4, 5, 6, 7, 8, 9. What comes
after nine? Zero right? We have run out of digits to represent our number, so
we begin to reuse what we have and place a one before the zero to indicate we
have filled the first column up one time.

1
2
3

7.2. HEXADECIMAL 49

Now instead count to three: 0, 1, 10, 11. Did you forget already, a computer
can only say yes power and no power. If it is going to represent a number greater
than one it will need to add an additional circuit to say the previous one has
filled once. But again, it can’t indicate more than a single overflow resulting in
the number four: 100. This is not one-hundred, eleven, or ten. Easily this could
have all been represented with dots and dashes: . - -. —-.. but now how will
I indicate the end of a sentence? Actually it harder to read so the standard 0
and 1 symbols will work fine. Besides you may have thought I was just saying
“atnmd” and just been very confused.

Just as decimal increments for powers of ten (10, 100, 1000), binary increases
its representative storage for powers of two.

0: 0

2: 10

4: 100

8: 1000
16: 10000

In decimal sixteen is simply two digits, while binary has just been growing
at an alarming rate. This is where hexadecimal comes in to save the day.

7.2 Hexadecimal

For a 32-bit computer addresses are stored in. . .32-bits and 64-bits for a...64-
bit machine. This is a lot of number so representing it in binary is out of the
question.

011111110011000101010110011001000000111111100000

Oh, umm. How did that get there. But why not use decimal you ask? After
all this address could easily be said to be at:

139849879523296

Simply because the number is of no use. What is important is being able
to communicate with the computer and for it to communicate back in the most
efficient manner. Hexadecimal is a number in base 16, meaning a slot will
overflow for the sixteenth value. This address is represented as:

7F3156640FE0

Roman does not provide digits ten or higher, a hexadecimal uses the letters
A through F to correspond to 10 and 15 respectively. Thus you won’t reach
10 until your sixteenth number. This is being brought up because our memory
addresses will be presented in this form and it is important to understand this
numbering system when working with computers in general. Let us take a look
at a program shows us addresses.

Listing 7-3: Hexadecimal Address

import std.stdio;
import std.conv;

50 CHAPTER 7. POINTERS, ARRAYS AND STRUCTURES

4 void main() {

5 int num = 7;

6 int* pnum = #

7 int num2 = *x#

8

9 pragma(msg, ”Pointer size: 7 7 tol!lstring (pnum.sizeof));
10

11 writeln (”&num um) ;
12 writeln (7 pnum: ”, pnum),
13 writeln ("&num2: 7, &num?2);
14

15 assert (&num == pnum);

16 assert (&num != &num?2);

17 }

$ dmd example32.d
Pointer size: 8

$./example32

&num : 7FFFF87601B8
pnum: 7FFFF87601B8
&num2: 7FFFF87601C8

7.2.1 Addresses in More Detail

If you work making any attempt to check your understanding of bytes, bits, and
address size, then you may have noticed that for a 64-bit system the address is
only 48 bits. This is due to the architecture created by AMD for 64-bit systems.
Here is a breakdown of the address used earlier.

7 F 3 1 5 6 6 4 0 F E O
1 2 3 4 5 6 7 8 9 10 11 12

Each digit in hexadecimal corresponds to for bits as F in binary, 1111, is for
bits. The address given was twelve digits, twelve times four is:

Listing 7-4: Programming Math

import std.conv;
import std.math;

void main() {
pragma(msg, 12 *x 4);
pragma(msg, " Addressable Bytes: 7 7 tolstring (pow(2, 12 % 4)));

N O U W N

}

$ dmd example33.d

48

Addressable Bytes: O
$./example33

© 00 J O U = W N =

e e e
UL W N = O

S TR W N

7.3. ARRAYS AND POINTER ARITHMETIC 51

7.3 Arrays and Pointer Arithmetic

Arrays are just contiguous blocks of memory where each element is of equal size.
We have seen how to use indexing to obtain an element from these arrays, now
a pointer into the array will provide this access.

Listing 7-5: Arrays as Pointers

void main() {
auto arr = [3,4,12,23];
assert (sum(arr.ptr, arr.length) = 42);

}

int sum(in int* values, in size_t length) pure
in {

assert (values !is null);
} body {

int total;

foreach (i; 0..length) {

total += values|[i];
}

return total;

$ dmd example34.d
$./example34

A function which takes an pointer and a length is to force the world of
pointers into the function. We require the length because pointers do not come
with how many elements exist in them. The function is also defined with in and
pure as the arguments are not modified and we will not be affecting external
state.

In the main function we pass our array as a pointer by using the ptr property.
This is done instead of taking the address because an array in D is a struct with
a pointer and length. Though using &arr will still provide the same information
as arr.ptr.

The sum function accesses each element in the pointer and does so just like
you would an array. However the foreach loop is changed to iterate over index
values instead of the values inside the pointer.

Listing 7-6: Arrays as Pointers

void main() {
auto arr = [3,4,12,23];
assert (sum(arr.ptr, arr.length) = 42);

}

int sum(in int* values, in size_t length) pure

© 00

10
11
12
13
14
15

W N OO WNN -

52 CHAPTER 7. POINTERS, ARRAYS AND STRUCTURES

in {
assert (values lis null);
} body {
int total;
foreach (i; 0..length) {
total 4+= *(values + i); // Use arithmetic
}
return total;
}

$ dmd example35.d
$./example3b

This is a very minor modification to the previous example. Instead of in-
dexing into the pointer the index is added to the pointer and the new location
is dereferenced.

Pointer arithmetic is applying basic math operations, addition or subtrac-
tion, to an address.

7.4 Common Errors

D’s garbage collector will not collect items which are referenced by a pointer,
however when working with value types the address will be on the stack and if
the stack frame returns your pointer will no longer be valid.

Listing 7-7: Returning Local Pointer

void main() {
auto p = getValue ();
¥

intx getValue() {
int num = 7;
return &mum;

$ dmd example36.d
example36.d(7): Error: escaping reference to local num

The stack frame is named as it stacks a frame for the function within memory.
When a function iscalled the parameters are placed on this stack along with a
reservation for the result and any new variables created during the execution.
The real nice thing about the stack is when the function completes there is no
need for cleanup TODO: finish:wq :wq

Chapter 8

Iterators

Programming is all about processing data. At a very high level this means look-
ing at and looking for specific kinds of data which can be culminated, modified,
and pushed out as either more data or as useful information. Unlike data, in-
formation has meaning which usually comes from associating multiple types of
data.

Consider: 15.5, 18, 21, 75.5. Can you tell me anything about this data?
This data represents specific ages in a persons life. In fact they're just some
numbers the United States has decided are ”defining” times in someones life. At
fifteen and one-half one can get a permit to drive, at eighteen one is consider an
adult and can by cigarettes, at the magical age of twenty-one one can purchase
alcohol, and seventy-five and one-half the government requires funds be removed
from your retirement accounts. It is surprising how little meaning there is in
pure data.

Iterators are collections of data that provide a means to move/observe/pro-
gress/iterate through this data. In D the foreach loop is one of the main mechi-
acnisms for performing operations on these iterables. There are several options
for creating an iterator; the most common is known an a range.

8.1 Java Iterable

53

54

CHAPTER 8. ITERATORS

Chapter 9

Formatting

95

	Getting Started
	Audience
	Processing
	Types in Programming
	Floating Point

	Precedence
	Commenting
	Task Comments

	Variables, Functions, and Modules
	Variables
	Functions
	Function Contracts

	Modules
	Packages

	Common Errors

	A Brief History
	The Dinosaurs
	Assembly
	FORTRAN
	C

	The Modern Times
	Is D a Duck?

	The Rise and Fall of D
	Walter Bright
	Andrei Alexandrescu
	The Community
	Where D Has Gone

	The User Interface at the Console
	Hello World!
	Listen to Me
	A Word on double
	Looping
	Looping Without Loops

	Arrays and Associative Arrays
	Array
	Selective Import
	Global Variables
	Array Litterals
	Foreach
	Concatenation

	Associative Array
	Common Errors

	The Compilation Model
	Asking for Help
	Linker
	Compiler
	Build System

	Pointers, Arrays and Structures
	Binary
	Hexadecimal
	Addresses in More Detail

	Arrays and Pointer Arithmetic
	Common Errors

	Iterators
	Java Iterable

	Formatting

